Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 30(2): 213-23, Feb. 1997. tab, graf
Article in English | LILACS | ID: lil-188429

ABSTRACT

On the basis of our report that a glycolipoprotein fraction (GLP) extracted from Leptospira interrogans contains a potent inhibitor of renal Na,K-ATPase, we proposed that GLP-induced inhibition of Na,K-ATPase might be the primary cellular defect in the physiopathology of leptospirosis. The present study was designed to test this hypothesis by determining whether or not 1) GLP inhibits all the isoforms of Na,K-ATPase which are expressed in the tissues affected by leptospirosis, 2) Na,K-ATPase from leptospirosis-resistant species, such as the rat, is sensitive to GLP, 3) GLP inhibits Na,K-ATPase from intact cells, and 4) GLP inhibits ouabain-sensitive H,K-ATPase. The results indicate that in the rabbit, a leptospirosis-sensitive species, GLP inhibits with similar efficiency (apparent IC5O: 120-220 mug protein GLP/ml) all isoforms of Na,K-ATPase known to be expressed in target tissues for the disease. Na,K-ATPase from rat kidney displays a sensitivity to GLP similar to that of the rabbit kidney enzyme (apparent IC50: 25-80 and 50-150 mug protein GLP/ml for rat and rabbit, respectively), indicating that resistance to the disease does not result from the resistance of Na,K-ATPase to GLP. GLP also reduces ouabain-sensitive rubidium uptake in rat thick ascending limbs (pmol mm-1 min-1 ñ SEM; control: 23.8 ñ 1.8; GLP, 88 mug protein/ml: 8.2 ñ 0.9), demonstrating that it is active in intact cells. Finally, GLP had no demonstrable effect on renal H,K-ATPase activity, even on the ouabain-sensitive form, indicating that the active principle of GLP is more specific for Na,K-ATPase than ouabain itself. Although the hypothesis remains to be demonstrated in vivo, the present findings are compatible with the putative role of GLP-induced inhibition of Na,K-ATPase as an initial mechanism in the physiopathology of leptospirosis.


Subject(s)
Animals , Rabbits , Endotoxins/toxicity , H(+)-K(+)-Exchanging ATPase/physiology , In Vitro Techniques , Leptospira interrogans/pathogenicity , Leptospirosis/physiopathology , Rubidium/metabolism , Sodium-Potassium-Exchanging ATPase/physiology , Brain/cytology , Kidney Medulla/cytology
SELECTION OF CITATIONS
SEARCH DETAIL